Here's a **Prolog program** that represents the logical rules for classifying an animal as either a **cat** or a **dog**, based on the morphological features described in your detailed comparison. The program uses a set of predicates representing visual traits, and applies a decision framework to infer classification. This version is designed to work with facts (trait observations) and logical inference using rules. --- ### โœ… Prolog Program: Animal Classifier ```prolog % ------------------------------- % TRAIT PREDICATES % These represent observable features from an image. % Each predicate returns true if the trait is present in the animal. % ------------------------------- % Skull traits is_short_rounded_skull :- true. % Assume this is observed (can be set based on image input) is_flat_face :- true. is_long_elongated_skull :- false. is_prominent_muzzle :- false. % Ear traits is_tall_pointed_ear :- true. is_high_set_ear :- true. is_floppy_or_rounded_ear :- false. is_wide_spaced_ear :- false. % Eye traits is_large_round_eye :- true. is_lateral_eye_position :- true. is_small_eye :- false. is_forward_facing_eye :- false. % Paw traits is_small_paw_with_visible_toes :- true. has_retractable_claws :- true. is_large_paw_with_non_retractable_claws :- false. % Tail traits is_long_thin_tail :- true. is_tail_held_high_or_curled :- true. is_thick_tail :- false. % Body posture traits is_low_to_ground_body :- true. is_compact_body :- true. is_robust_upright_body :- false. is_long_legs_relative_to_body :- false. % Muzzle traits (profile) has_visible_stop_in_profile :- false. has_overbite_or_underbite :- false. % ------------------------------- % CLASSIFICATION RULES % These are based on the decision framework provided. % ------------------------------- % Cat classification rules is_cat :- cat_traits_count(CatCount), dog_traits_count(DogCount), CatCount >= 3, DogCount =:= 0. % Dog classification rules is_dog :- cat_traits_count(CatCount), dog_traits_count(DogCount), DogCount >= 3, CatCount =:= 0. % Counting cat-specific traits cat_traits_count(Count) :- findall(Trait, cat_trait(Trait), Traits), length(Traits, Count). % Define which predicates are cat-specific traits cat_trait(is_short_rounded_skull). cat_trait(is_flat_face). cat_trait(is_tall_pointed_ear). cat_trait(is_high_set_ear). cat_trait(is_large_round_eye). cat_trait(is_lateral_eye_position). cat_trait(is_small_paw_with_visible_toes). cat_trait(has_retractable_claws). cat_trait(is_long_thin_tail). cat_trait(is_tail_held_high_or_curled). cat_trait(is_low_to_ground_body). cat_trait(is_compact_body). % Counting dog-specific traits dog_traits_count(Count) :- findall(Trait, dog_trait(Trait), Traits), length(Traits, Count). % Define which predicates are dog-specific traits dog_trait(is_long_elongated_skull). dog_trait(is_prominent_muzzle). dog_trait(is_floppy_or_rounded_ear). dog_trait(is_wide_spaced_ear). dog_trait(is_small_eye). dog_trait(is_forward_facing_eye). dog_trait(is_large_paw_with_non_retractable_claws). dog_trait(is_thick_tail). dog_trait(is_robust_upright_body). dog_trait(is_long_legs_relative_to_body). dog_trait(has_visible_stop_in_profile). dog_trait(has_overbite_or_underbite). % ------------------------------- % SAMPLE QUERY % To test, you can run: % ?- is_cat. % ?- is_dog. % You may want to redefine facts like is_short_rounded_skull/0, etc., depending on image input. % ------------------------------- ``` --- ### ๐Ÿง  How It Works - **Traits** are defined as simple predicates (e.g., `is_short_rounded_skull`, `is_large_round_eye`) that can be set to `true` or `false`. - The program counts how many traits match for cats and dogs. - If **three or more cat-specific traits** are present, and **no dog-specific traits**, it classifies as a **cat**. - Similarly, if three or more **dog-specific traits** are present, it classifies as a **dog**. --- ### ๐Ÿงช Example Queries ```prolog ?- is_cat. % Returns true if enough cat traits are set to true ?- is_dog. % Returns true if enough dog traits are set to true ``` --- ### ๐Ÿ› ๏ธ Extending for Image Input To use this with real image data (e.g., a computer vision pipeline), you would: - Set the facts dynamically from image analysis. - Use `assert/1` or `retract/1` to change trait values. - For example: ```prolog ?- assert(is_short_rounded_skull). ?- is_cat. ``` Let me know if you want a version that integrates with actual image recognition libraries or uses probability-based reasoning!