add basic example

This commit is contained in:
Nicolas Sebastian Schuler
2025-08-04 15:27:54 +02:00
parent bbb868b357
commit c324247dc3
17 changed files with 2116 additions and 52 deletions

1
.gitignore vendored
View File

@@ -1,5 +1,4 @@
.jj
.tmp-data
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[codz]

View File

@@ -0,0 +1,158 @@
Here's a **Prolog program** that represents the logical rules for classifying an animal as either a **cat** or a **dog**, based on the morphological features described in your detailed comparison. The program uses a set of predicates representing visual traits, and applies a decision framework to infer classification.
This version is designed to work with facts (trait observations) and logical inference using rules.
---
### ✅ Prolog Program: Animal Classifier
```prolog
% -------------------------------
% TRAIT PREDICATES
% These represent observable features from an image.
% Each predicate returns true if the trait is present in the animal.
% -------------------------------
% Skull traits
is_short_rounded_skull :- true. % Assume this is observed (can be set based on image input)
is_flat_face :- true.
is_long_elongated_skull :- false.
is_prominent_muzzle :- false.
% Ear traits
is_tall_pointed_ear :- true.
is_high_set_ear :- true.
is_floppy_or_rounded_ear :- false.
is_wide_spaced_ear :- false.
% Eye traits
is_large_round_eye :- true.
is_lateral_eye_position :- true.
is_small_eye :- false.
is_forward_facing_eye :- false.
% Paw traits
is_small_paw_with_visible_toes :- true.
has_retractable_claws :- true.
is_large_paw_with_non_retractable_claws :- false.
% Tail traits
is_long_thin_tail :- true.
is_tail_held_high_or_curled :- true.
is_thick_tail :- false.
% Body posture traits
is_low_to_ground_body :- true.
is_compact_body :- true.
is_robust_upright_body :- false.
is_long_legs_relative_to_body :- false.
% Muzzle traits (profile)
has_visible_stop_in_profile :- false.
has_overbite_or_underbite :- false.
% -------------------------------
% CLASSIFICATION RULES
% These are based on the decision framework provided.
% -------------------------------
% Cat classification rules
is_cat :-
cat_traits_count(CatCount),
dog_traits_count(DogCount),
CatCount >= 3,
DogCount =:= 0.
% Dog classification rules
is_dog :-
cat_traits_count(CatCount),
dog_traits_count(DogCount),
DogCount >= 3,
CatCount =:= 0.
% Counting cat-specific traits
cat_traits_count(Count) :-
findall(Trait, cat_trait(Trait), Traits),
length(Traits, Count).
% Define which predicates are cat-specific traits
cat_trait(is_short_rounded_skull).
cat_trait(is_flat_face).
cat_trait(is_tall_pointed_ear).
cat_trait(is_high_set_ear).
cat_trait(is_large_round_eye).
cat_trait(is_lateral_eye_position).
cat_trait(is_small_paw_with_visible_toes).
cat_trait(has_retractable_claws).
cat_trait(is_long_thin_tail).
cat_trait(is_tail_held_high_or_curled).
cat_trait(is_low_to_ground_body).
cat_trait(is_compact_body).
% Counting dog-specific traits
dog_traits_count(Count) :-
findall(Trait, dog_trait(Trait), Traits),
length(Traits, Count).
% Define which predicates are dog-specific traits
dog_trait(is_long_elongated_skull).
dog_trait(is_prominent_muzzle).
dog_trait(is_floppy_or_rounded_ear).
dog_trait(is_wide_spaced_ear).
dog_trait(is_small_eye).
dog_trait(is_forward_facing_eye).
dog_trait(is_large_paw_with_non_retractable_claws).
dog_trait(is_thick_tail).
dog_trait(is_robust_upright_body).
dog_trait(is_long_legs_relative_to_body).
dog_trait(has_visible_stop_in_profile).
dog_trait(has_overbite_or_underbite).
% -------------------------------
% SAMPLE QUERY
% To test, you can run:
% ?- is_cat.
% ?- is_dog.
% You may want to redefine facts like is_short_rounded_skull/0, etc., depending on image input.
% -------------------------------
```
---
### 🧠 How It Works
- **Traits** are defined as simple predicates (e.g., `is_short_rounded_skull`, `is_large_round_eye`) that can be set to `true` or `false`.
- The program counts how many traits match for cats and dogs.
- If **three or more cat-specific traits** are present, and **no dog-specific traits**, it classifies as a **cat**.
- Similarly, if three or more **dog-specific traits** are present, it classifies as a **dog**.
---
### 🧪 Example Queries
```prolog
?- is_cat. % Returns true if enough cat traits are set to true
?- is_dog. % Returns true if enough dog traits are set to true
```
---
### 🛠️ Extending for Image Input
To use this with real image data (e.g., a computer vision pipeline), you would:
- Set the facts dynamically from image analysis.
- Use `assert/1` or `retract/1` to change trait values.
- For example:
```prolog
?- assert(is_short_rounded_skull).
?- is_cat.
```
Let me know if you want a version that integrates with actual image recognition libraries or uses probability-based reasoning!

Binary file not shown.

After

Width:  |  Height:  |  Size: 257 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 635 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 476 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 592 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 449 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 531 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 364 KiB

1172
.tmp-data/prompts.md Normal file

File diff suppressed because it is too large Load Diff

51
main.py
View File

@@ -1,51 +0,0 @@
import cv2
from src.data import load_data
from src.img_utils import (
apply_color_overlay,
apply_composite_overlay,
apply_gradient_heatmap_overlay,
apply_spotlight_heatmap,
blur_background,
desaturate_background,
draw_border,
)
def main():
print("Starting Abduction Demo")
labeled_images = load_data()
image = labeled_images[0].image
mask = labeled_images[0].create_mask([labeled_images[0].labels[0]])
overlay_result = apply_color_overlay(image, mask, color=(255, 100, 0), alpha=0.4)
cv2.imwrite(".tmp-data/highlight_overlay.jpg", overlay_result)
blur_result = blur_background(image, mask, blur_intensity=(51, 51))
cv2.imwrite(".tmp-data/highlight_blurred.jpg", blur_result)
desaturate_result = desaturate_background(image, mask)
cv2.imwrite(".tmp-data/highlight_desaturated.jpg", desaturate_result)
gradient_heatmap_result = apply_gradient_heatmap_overlay(image, mask, colormap=cv2.COLORMAP_JET, alpha=0.6)
cv2.imwrite(".tmp-data/highlight_gradient_heatmap.jpg", gradient_heatmap_result)
spotlight_result = apply_spotlight_heatmap(image, mask, darkness_factor=0.2)
cv2.imwrite(".tmp-data/highlight_spotlight_heatmap.jpg", spotlight_result)
composite_result = apply_composite_overlay(
image, mask, colormap=cv2.COLORMAP_JET, foreground_alpha=0.6, background_alpha=0.5
)
cv2.imwrite(".tmp-data/highlight_composite.jpg", composite_result)
bordered_image = draw_border(
image,
mask,
color=(50, 255, 50), # A bright green color
thickness=8,
)
cv2.imwrite(".tmp-data/highlight_border.jpg", bordered_image)
if __name__ == "__main__":
main()

97
main_basic.py Normal file
View File

@@ -0,0 +1,97 @@
from pathlib import Path
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_ollama.llms import OllamaLLM
from src.data import LabeledImage, load_data
from src.img_utils import encode_base64_resized
TESTING = 1
def reasoning():
template_reasoning = ChatPromptTemplate.from_messages([
("system", "{role_reasoning}"),
("human", "Question: {question_reasoning}"),
])
model_reasoning = OllamaLLM(model="hf.co/unsloth/Qwen3-30B-A3B-Instruct-2507-GGUF:Q4_K_M")
reasoning_chain = template_reasoning | model_reasoning | StrOutputParser()
description = reasoning_chain.invoke({
"role_reasoning": "You are an expert in the classification of whether an animal is a cat or a dog",
"question_reasoning": "I want you to do a comparative analysis of cats and dogs. Your analysis must use the inherent traits and biological characteristics of each species. You should list each of these characteristics so that an informed decision can be made about whether a given animal, e.g., in the form of an image, is a cat or a dog. Please provide a detailed analysis, focusing on traits and characteristics that can be extracted from a given image.",
})
return description
def coding(description: str):
template_coding = ChatPromptTemplate.from_messages([
("system", "{role_coding}"),
("human", "Instructions: {instruction}\n Description: {description}"),
])
model_coding = OllamaLLM(model="hf.co/unsloth/Qwen3-Coder-30B-A3B-Instruct-GGUF:Q4_K_XL")
coding_chain = template_coding | model_coding | StrOutputParser()
coding_description = coding_chain.invoke({
"role_coding": "You are an expert Prolog programmer with extended knowledge in reasoning and probabilities. Given instructions and a description, you can write a correct Prolog program that expresses the given task as a suitable logical program in Prolog",
"instruction": "Write a logical program for the following description",
"description": description,
})
return coding_description
def grounding(coding_description: str, labeled_image: LabeledImage):
model_vl = OllamaLLM(model="qwen2.5vl:7b")
model_vl_ctx = model_vl.bind(
images=[encode_base64_resized(labeled_image.image_path, max_width=512, max_height=512, quality=70)]
)
template_grounding = ChatPromptTemplate.from_messages([
("system", "{role_vl}"),
(
"human",
"""Instructions: {instruction}
Description: {description}
""",
),
])
grounding_chain = template_grounding | model_vl_ctx | StrOutputParser()
return grounding_chain.invoke(
{
"role_vl": "You are an expert in analyzing an image to extract and match features of a given list.",
"instruction": """You are given a logic program in the following description and an image as input. Your task is to do the following steps:
1. Extract the list of features from the given Prolog program that contribute to deciding whether the image is a cat or a dog.
2. Match only the features present in the given image with the features you retrieved from the Prolog program. Give a likelihood of how sure you are with your matching. Print your result in this format:
- <feature from prolog program>: <likelihood>
- ...
""",
"description": coding_description,
},
)
def main():
print("Starting Abduction Demo")
labeled_images = load_data()
labeled_image = labeled_images[1]
# image = labeled_image.image
# mask = labeled_image.create_mask([labeled_image.labels[0]])
if TESTING == 1:
coding_description = Path(".tmp-data/coding_description").open("r").read()
else:
coding_description = coding(reasoning())
with open(".tmp-data/coding_description", "w") as f:
f.write(coding_description)
result = grounding(coding_description, labeled_image)
# TODO: Feed this into the Prolog program and execute to reach final verdict
print(result)
if __name__ == "__main__":
main()

101
main_xai.py Normal file
View File

@@ -0,0 +1,101 @@
from pathlib import Path
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_ollama.llms import OllamaLLM
from src.data import LabeledImage, load_data
from src.img_utils import encode_base64_resized
TESTING = 1
def reasoning():
template_reasoning = ChatPromptTemplate.from_messages([
("system", "{role_reasoning}"),
("human", "Question: {question_reasoning}"),
])
model_reasoning = OllamaLLM(model="hf.co/unsloth/Qwen3-30B-A3B-Instruct-2507-GGUF:Q4_K_M")
reasoning_chain = template_reasoning | model_reasoning | StrOutputParser()
description = reasoning_chain.invoke({
"role_reasoning": "You are an expert in the classification of whether an animal is a cat or a dog",
"question_reasoning": "I want you to do a comparative analysis of cats and dogs. Your analysis must use the inherent traits and biological characteristics of each species. You should list each of these characteristics so that an informed decision can be made about whether a given animal, e.g., in the form of an image, is a cat or a dog. Please provide a detailed analysis, focusing on traits and characteristics that can be extracted from a given image.",
})
return description
def coding(description: str):
template_coding = ChatPromptTemplate.from_messages([
("system", "{role_coding}"),
("human", "Instructions: {instruction}\n Description: {description}"),
])
model_coding = OllamaLLM(model="hf.co/unsloth/Qwen3-Coder-30B-A3B-Instruct-GGUF:Q4_K_XL")
coding_chain = template_coding | model_coding | StrOutputParser()
coding_description = coding_chain.invoke({
"role_coding": "You are an expert Prolog programmer with extended knowledge in reasoning and probabilities. Given instructions and a description, you can write a correct Prolog program that expresses the given task as a suitable logical program in Prolog",
"instruction": "Write a logical program for the following description",
"description": description,
})
return coding_description
def grounding(coding_description: str, labeled_image: LabeledImage):
model_vl = OllamaLLM(model="qwen2.5vl:7b")
model_vl_ctx = model_vl.bind(
images=[
encode_base64_resized(
Path(".tmp-data/highlight_spotlight_heatmap.jpg"), max_width=512, max_height=512, quality=70
)
]
)
template_grounding = ChatPromptTemplate.from_messages([
("system", "{role_vl}"),
(
"human",
"""Instructions: {instruction}
Description: {description}
""",
),
])
grounding_chain = template_grounding | model_vl_ctx | StrOutputParser()
return grounding_chain.invoke(
{
"role_vl": "You are an expert in analyzing an image to extract and match features of a given list.",
"instruction": """You are given a logic program in the following description and an image with a heatmap as input. Your task is to do the following steps:
1. Extract the list of features from the given Prolog program that contribute to deciding whether the image is a cat or a dog.
2. Match only the features highlighted by the heatmap in the given image with the features you retrieved from the Prolog program. Give a likelihood of how sure you are with your matching. Print your result in this format:
- <feature from prolog program>: <likelihood>
- ...
""",
"description": coding_description,
},
)
def main():
print("Starting Abduction Demo")
labeled_images = load_data()
labeled_image = labeled_images[1]
# image = labeled_image.image
# mask = labeled_image.create_mask([labeled_image.labels[0]])
if TESTING == 1:
coding_description = Path(".tmp-data/coding_description").open("r").read()
else:
coding_description = coding(reasoning())
with open(".tmp-data/coding_description", "w") as f:
f.write(coding_description)
result = grounding(coding_description, labeled_image)
# TODO: Feed this into the Prolog program and execute to reach final verdict
print(result)
if __name__ == "__main__":
main()

View File

@@ -18,6 +18,7 @@ dependencies = [
"langchain-ollama>=0.3.6",
"numpy>=2.3.2",
"opencv-python>=4.11.0.86",
"langchain-community>=0.3.27",
]
[tool.uv]

View File

@@ -5,6 +5,8 @@ from typing import List
import cv2
import numpy as np
from src.img_utils import blur_background
DATA_PATH_ROOT = Path("data").absolute()
DATA_PATH_IMAGES = DATA_PATH_ROOT / "images"
DATA_PATH_LABELS = DATA_PATH_ROOT / "labels"
@@ -58,3 +60,28 @@ def load_data():
for img in DATA_PATH_IMAGES.glob("*.jpg"):
limgs.append(LabeledImage(img, DATA_PATH_LABELS / (str(img.stem) + ".txt"), DATA_PATH_ROOT / "notes.json"))
return limgs
def get_feature_list(labeled_image: LabeledImage):
"""Get a list of available features in the given image."""
return [entry["name"] for entry in labeled_image.labels]
def emphasize_feature(labeled_image: LabeledImage, feature: str):
"""Get the highlighted section with regard to the `feature` for the given image.
Used for further inspection of the given feature.
Args:
feature: name of the feature to inspect
"""
categories = labeled_image.categories.values()
if feature in categories:
# get ids from feature
tmp = [(limg["id"] if limg["name"] == feature else None) for limg in labeled_image.labels]
ids = filter(None, tmp)
mask = labeled_image.create_mask([labeled_image.labels[x] for x in ids])
# return emphasized feature in image
return blur_background(labeled_image.image, mask, blur_intensity=(51, 51))
else:
return None

View File

@@ -1,3 +1,5 @@
from pathlib import Path
import cv2
import numpy as np
@@ -14,6 +16,10 @@ def apply_color_overlay(image, mask, color=(0, 0, 255), alpha=0.5):
Returns:
np.ndarray: The image with the colored overlay.
Examples:
overlay_result = apply_color_overlay(image, mask, color=(255, 100, 0), alpha=0.4)
cv2.imwrite("image.jpg", overlay_result)
"""
# Create a colored layer
overlay = np.zeros_like(image)
@@ -36,6 +42,10 @@ def desaturate_background(image, mask):
Returns:
np.ndarray: The image with a desaturated background.
Examples:
desaturate_result = desaturate_background(image, mask)
cv2.imwrite("image.jpg", desaturate_result)
"""
# Create a grayscale version of the image, then convert it back to 3 channels
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
@@ -65,6 +75,10 @@ def blur_background(image, mask, blur_intensity=(35, 35)):
Returns:
np.ndarray: The image with a blurred background.
Examples:
blur_result = blur_background(image, mask, blur_intensity=(51, 51))
cv2.imwrite("image.jpg", blur_result)
"""
# Create a blurred version of the image
blurred_image = cv2.GaussianBlur(image, blur_intensity, 0)
@@ -94,6 +108,10 @@ def apply_gradient_heatmap_overlay(image, mask, colormap=cv2.COLORMAP_JET, alpha
Returns:
np.ndarray: The image with the gradient heatmap overlay.
Examples:
gradient_heatmap_result = apply_gradient_heatmap_overlay(image, mask, colormap=cv2.COLORMAP_JET, alpha=0.6)
cv2.imwrite("image.jpg", gradient_heatmap_result)
"""
# 1. Create a distance transform from the mask.
# This creates a float32 image where each pixel's value is its distance
@@ -130,6 +148,10 @@ def apply_spotlight_heatmap(image, mask, colormap=cv2.COLORMAP_JET, alpha=0.6, d
Returns:
np.ndarray: The image with the spotlight heatmap effect.
Examples:
spotlight_result = apply_spotlight_heatmap(image, mask, darkness_factor=0.2)
cv2.imwrite("image.jpg", spotlight_result)
"""
# 1. Create the gradient heatmap region (same as the previous method)
dist_transform = cv2.distanceTransform(mask, cv2.DIST_L2, 5)
@@ -168,6 +190,12 @@ def apply_composite_overlay(image, mask, colormap=cv2.COLORMAP_JET, foreground_a
Returns:
np.ndarray: The final composite image.
Examples:
composite_result = apply_composite_overlay(
image, mask, colormap=cv2.COLORMAP_JET, foreground_alpha=0.6, background_alpha=0.5
)
cv2.imwrite("image.jpg", composite_result)
"""
# === Part 1: Create the Highlighted Foreground ===
@@ -220,6 +248,15 @@ def draw_border(image, mask, color=(0, 255, 0), thickness=3):
Returns:
np.ndarray: The image with the border drawn on it.
Examples:
bordered_image = draw_border(
image,
mask,
color=(50, 255, 50), # A bright green color
thickness=8,
)
cv2.imwrite(".tmp-data/highlight_border.jpg", bordered_image)
"""
# Create a copy to avoid modifying the original image
output_image = image.copy()
@@ -233,3 +270,181 @@ def draw_border(image, mask, color=(0, 255, 0), thickness=3):
cv2.drawContours(output_image, contours, -1, color, thickness)
return output_image
def encode_base64_simple(image_path: Path):
"""
Simple base64 encoding using direct file reading (preserves original format).
Args:
image_path (Path): Path to the image file.
Returns:
str: Base64 encoded string of the image file.
"""
import base64
try:
with open(image_path, "rb") as image_file:
image_base64 = base64.b64encode(image_file.read()).decode("utf-8")
return image_base64
except FileNotFoundError:
raise ValueError(f"Image file not found: {image_path}")
except Exception as e:
raise ValueError(f"Error reading image file: {e}")
def encode_base64_resized(image_path: Path, max_width: int = 800, max_height: int = 600, quality: int = 85):
"""
Resize image and encode to base64 to reduce size for LLM context.
Args:
image_path (Path): Path to the image file.
max_width (int): Maximum width for resized image.
max_height (int): Maximum height for resized image.
quality (int): JPEG compression quality (1-100).
Returns:
str: Base64 encoded string of the resized image.
"""
import base64
try:
# Read the image
image = cv2.imread(str(image_path.absolute()))
if image is None:
raise ValueError(f"Could not read image: {image_path}")
# Get original dimensions
height, width = image.shape[:2]
# Calculate new dimensions while maintaining aspect ratio
if width > max_width or height > max_height:
# Calculate scaling factor
width_ratio = max_width / width
height_ratio = max_height / height
scale_factor = min(width_ratio, height_ratio)
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
# Resize the image
image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
# Encode as JPEG with specified quality
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
_, buffer = cv2.imencode(".jpg", image, encode_param)
# Convert to base64
image_base64 = base64.b64encode(buffer).decode("utf-8")
return image_base64
except FileNotFoundError:
raise ValueError(f"Image file not found: {image_path}")
except Exception as e:
raise ValueError(f"Error processing image: {e}")
def encode_base64_aggressive_compression(
image_path: Path, max_width: int = 400, max_height: int = 400, quality: int = 50
):
"""
Aggressively compress image for minimal base64 size while preserving key features.
Args:
image_path (Path): Path to the image file.
max_width (int): Maximum width for resized image (smaller = less data).
max_height (int): Maximum height for resized image (smaller = less data).
quality (int): JPEG compression quality (1-100, lower = smaller file).
Returns:
str: Base64 encoded string of the heavily compressed image.
"""
import base64
try:
# Read the image
image = cv2.imread(str(image_path))
if image is None:
raise ValueError(f"Could not read image: {image_path}")
# Get original dimensions
height, width = image.shape[:2]
# Calculate new dimensions with aggressive downsizing
width_ratio = max_width / width
height_ratio = max_height / height
scale_factor = min(width_ratio, height_ratio)
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
# Resize with high-quality interpolation for small images
image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
# Apply slight denoising to help compression
image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
# Encode as JPEG with aggressive compression
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
_, buffer = cv2.imencode(".jpg", image, encode_param)
# Convert to base64
image_base64 = base64.b64encode(buffer).decode("utf-8")
# Log the size for debugging
size_kb = len(image_base64) * 3 / 4 / 1024 # Approximate KB size
print(f"Compressed image to {new_width}x{new_height}, base64 size: ~{size_kb:.1f}KB")
return image_base64
except FileNotFoundError:
raise ValueError(f"Image file not found: {image_path}")
except Exception as e:
raise ValueError(f"Error processing image: {e}")
def get_image_size_estimate(image_path: Path) -> dict:
"""
Get size estimates for different compression levels without actually encoding.
Args:
image_path (Path): Path to the image file.
Returns:
dict: Size estimates for different compression settings.
"""
import os
try:
# Get original file size
original_size_mb = os.path.getsize(image_path) / (1024 * 1024)
# Read image to get dimensions
image = cv2.imread(str(image_path))
if image is None:
raise ValueError(f"Could not read image: {image_path}")
height, width = image.shape[:2]
# Estimate base64 sizes for different settings
estimates = {
"original": {
"dimensions": f"{width}x{height}",
"file_size_mb": original_size_mb,
"estimated_base64_mb": original_size_mb * 1.33, # Base64 overhead
},
"standard_compression": {
"dimensions": "800x600 (max)",
"estimated_base64_kb": 150, # Rough estimate
},
"aggressive_compression": {
"dimensions": "400x400 (max)",
"estimated_base64_kb": 50, # Rough estimate
},
}
return estimates
except Exception as e:
return {"error": str(e)}

345
uv.lock generated
View File

@@ -12,6 +12,7 @@ version = "0.1.0"
source = { editable = "." }
dependencies = [
{ name = "langchain", marker = "python_full_version >= '3.13'" },
{ name = "langchain-community", marker = "python_full_version >= '3.13'" },
{ name = "langchain-ollama", marker = "python_full_version >= '3.13'" },
{ name = "numpy", marker = "python_full_version >= '3.13'" },
{ name = "opencv-python", marker = "python_full_version >= '3.13'" },
@@ -28,6 +29,7 @@ dev = [
[package.metadata]
requires-dist = [
{ name = "langchain", specifier = ">=0.3.27" },
{ name = "langchain-community", specifier = ">=0.3.27" },
{ name = "langchain-ollama", specifier = ">=0.3.6" },
{ name = "numpy", specifier = ">=2.3.2" },
{ name = "opencv-python", specifier = ">=4.11.0.86" },
@@ -41,6 +43,61 @@ dev = [
{ name = "ty", specifier = ">=0.0.1a16" },
]
[[package]]
name = "aiohappyeyeballs"
version = "2.6.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/26/30/f84a107a9c4331c14b2b586036f40965c128aa4fee4dda5d3d51cb14ad54/aiohappyeyeballs-2.6.1.tar.gz", hash = "sha256:c3f9d0113123803ccadfdf3f0faa505bc78e6a72d1cc4806cbd719826e943558", size = 22760 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/0f/15/5bf3b99495fb160b63f95972b81750f18f7f4e02ad051373b669d17d44f2/aiohappyeyeballs-2.6.1-py3-none-any.whl", hash = "sha256:f349ba8f4b75cb25c99c5c2d84e997e485204d2902a9597802b0371f09331fb8", size = 15265 },
]
[[package]]
name = "aiohttp"
version = "3.12.15"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "aiohappyeyeballs", marker = "python_full_version >= '3.13'" },
{ name = "aiosignal", marker = "python_full_version >= '3.13'" },
{ name = "attrs", marker = "python_full_version >= '3.13'" },
{ name = "frozenlist", marker = "python_full_version >= '3.13'" },
{ name = "multidict", marker = "python_full_version >= '3.13'" },
{ name = "propcache", marker = "python_full_version >= '3.13'" },
{ name = "yarl", marker = "python_full_version >= '3.13'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/9b/e7/d92a237d8802ca88483906c388f7c201bbe96cd80a165ffd0ac2f6a8d59f/aiohttp-3.12.15.tar.gz", hash = "sha256:4fc61385e9c98d72fcdf47e6dd81833f47b2f77c114c29cd64a361be57a763a2", size = 7823716 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/f2/33/918091abcf102e39d15aba2476ad9e7bd35ddb190dcdd43a854000d3da0d/aiohttp-3.12.15-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:9f922ffd05034d439dde1c77a20461cf4a1b0831e6caa26151fe7aa8aaebc315", size = 696741 },
{ url = "https://files.pythonhosted.org/packages/b5/2a/7495a81e39a998e400f3ecdd44a62107254803d1681d9189be5c2e4530cd/aiohttp-3.12.15-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2ee8a8ac39ce45f3e55663891d4b1d15598c157b4d494a4613e704c8b43112cd", size = 474407 },
{ url = "https://files.pythonhosted.org/packages/49/fc/a9576ab4be2dcbd0f73ee8675d16c707cfc12d5ee80ccf4015ba543480c9/aiohttp-3.12.15-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3eae49032c29d356b94eee45a3f39fdf4b0814b397638c2f718e96cfadf4c4e4", size = 466703 },
{ url = "https://files.pythonhosted.org/packages/09/2f/d4bcc8448cf536b2b54eed48f19682031ad182faa3a3fee54ebe5b156387/aiohttp-3.12.15-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b97752ff12cc12f46a9b20327104448042fce5c33a624f88c18f66f9368091c7", size = 1705532 },
{ url = "https://files.pythonhosted.org/packages/f1/f3/59406396083f8b489261e3c011aa8aee9df360a96ac8fa5c2e7e1b8f0466/aiohttp-3.12.15-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:894261472691d6fe76ebb7fcf2e5870a2ac284c7406ddc95823c8598a1390f0d", size = 1686794 },
{ url = "https://files.pythonhosted.org/packages/dc/71/164d194993a8d114ee5656c3b7ae9c12ceee7040d076bf7b32fb98a8c5c6/aiohttp-3.12.15-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5fa5d9eb82ce98959fc1031c28198b431b4d9396894f385cb63f1e2f3f20ca6b", size = 1738865 },
{ url = "https://files.pythonhosted.org/packages/1c/00/d198461b699188a93ead39cb458554d9f0f69879b95078dce416d3209b54/aiohttp-3.12.15-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0fa751efb11a541f57db59c1dd821bec09031e01452b2b6217319b3a1f34f3d", size = 1788238 },
{ url = "https://files.pythonhosted.org/packages/85/b8/9e7175e1fa0ac8e56baa83bf3c214823ce250d0028955dfb23f43d5e61fd/aiohttp-3.12.15-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5346b93e62ab51ee2a9d68e8f73c7cf96ffb73568a23e683f931e52450e4148d", size = 1710566 },
{ url = "https://files.pythonhosted.org/packages/59/e4/16a8eac9df39b48ae102ec030fa9f726d3570732e46ba0c592aeeb507b93/aiohttp-3.12.15-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:049ec0360f939cd164ecbfd2873eaa432613d5e77d6b04535e3d1fbae5a9e645", size = 1624270 },
{ url = "https://files.pythonhosted.org/packages/1f/f8/cd84dee7b6ace0740908fd0af170f9fab50c2a41ccbc3806aabcb1050141/aiohttp-3.12.15-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:b52dcf013b57464b6d1e51b627adfd69a8053e84b7103a7cd49c030f9ca44461", size = 1677294 },
{ url = "https://files.pythonhosted.org/packages/ce/42/d0f1f85e50d401eccd12bf85c46ba84f947a84839c8a1c2c5f6e8ab1eb50/aiohttp-3.12.15-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:9b2af240143dd2765e0fb661fd0361a1b469cab235039ea57663cda087250ea9", size = 1708958 },
{ url = "https://files.pythonhosted.org/packages/d5/6b/f6fa6c5790fb602538483aa5a1b86fcbad66244997e5230d88f9412ef24c/aiohttp-3.12.15-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ac77f709a2cde2cc71257ab2d8c74dd157c67a0558a0d2799d5d571b4c63d44d", size = 1651553 },
{ url = "https://files.pythonhosted.org/packages/04/36/a6d36ad545fa12e61d11d1932eef273928b0495e6a576eb2af04297fdd3c/aiohttp-3.12.15-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:47f6b962246f0a774fbd3b6b7be25d59b06fdb2f164cf2513097998fc6a29693", size = 1727688 },
{ url = "https://files.pythonhosted.org/packages/aa/c8/f195e5e06608a97a4e52c5d41c7927301bf757a8e8bb5bbf8cef6c314961/aiohttp-3.12.15-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:760fb7db442f284996e39cf9915a94492e1896baac44f06ae551974907922b64", size = 1761157 },
{ url = "https://files.pythonhosted.org/packages/05/6a/ea199e61b67f25ba688d3ce93f63b49b0a4e3b3d380f03971b4646412fc6/aiohttp-3.12.15-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ad702e57dc385cae679c39d318def49aef754455f237499d5b99bea4ef582e51", size = 1710050 },
{ url = "https://files.pythonhosted.org/packages/b4/2e/ffeb7f6256b33635c29dbed29a22a723ff2dd7401fff42ea60cf2060abfb/aiohttp-3.12.15-cp313-cp313-win32.whl", hash = "sha256:f813c3e9032331024de2eb2e32a88d86afb69291fbc37a3a3ae81cc9917fb3d0", size = 422647 },
{ url = "https://files.pythonhosted.org/packages/1b/8e/78ee35774201f38d5e1ba079c9958f7629b1fd079459aea9467441dbfbf5/aiohttp-3.12.15-cp313-cp313-win_amd64.whl", hash = "sha256:1a649001580bdb37c6fdb1bebbd7e3bc688e8ec2b5c6f52edbb664662b17dc84", size = 449067 },
]
[[package]]
name = "aiosignal"
version = "1.4.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "frozenlist", marker = "python_full_version >= '3.13'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/61/62/06741b579156360248d1ec624842ad0edf697050bbaf7c3e46394e106ad1/aiosignal-1.4.0.tar.gz", hash = "sha256:f47eecd9468083c2029cc99945502cb7708b082c232f9aca65da147157b251c7", size = 25007 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/fb/76/641ae371508676492379f16e2fa48f4e2c11741bd63c48be4b12a6b09cba/aiosignal-1.4.0-py3-none-any.whl", hash = "sha256:053243f8b92b990551949e63930a839ff0cf0b0ebbe0597b0f3fb19e1a0fe82e", size = 7490 },
]
[[package]]
name = "annotated-types"
version = "0.7.0"
@@ -63,6 +120,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/a1/ee/48ca1a7c89ffec8b6a0c5d02b89c305671d5ffd8d3c94acf8b8c408575bb/anyio-4.9.0-py3-none-any.whl", hash = "sha256:9f76d541cad6e36af7beb62e978876f3b41e3e04f2c1fbf0884604c0a9c4d93c", size = 100916 },
]
[[package]]
name = "attrs"
version = "25.3.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/5a/b0/1367933a8532ee6ff8d63537de4f1177af4bff9f3e829baf7331f595bb24/attrs-25.3.0.tar.gz", hash = "sha256:75d7cefc7fb576747b2c81b4442d4d4a1ce0900973527c011d1030fd3bf4af1b", size = 812032 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/77/06/bb80f5f86020c4551da315d78b3ab75e8228f89f0162f2c3a819e407941a/attrs-25.3.0-py3-none-any.whl", hash = "sha256:427318ce031701fea540783410126f03899a97ffc6f61596ad581ac2e40e3bc3", size = 63815 },
]
[[package]]
name = "certifi"
version = "2025.7.14"
@@ -125,6 +191,62 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335 },
]
[[package]]
name = "dataclasses-json"
version = "0.6.7"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "marshmallow", marker = "python_full_version >= '3.13'" },
{ name = "typing-inspect", marker = "python_full_version >= '3.13'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/64/a4/f71d9cf3a5ac257c993b5ca3f93df5f7fb395c725e7f1e6479d2514173c3/dataclasses_json-0.6.7.tar.gz", hash = "sha256:b6b3e528266ea45b9535223bc53ca645f5208833c29229e847b3f26a1cc55fc0", size = 32227 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c3/be/d0d44e092656fe7a06b55e6103cbce807cdbdee17884a5367c68c9860853/dataclasses_json-0.6.7-py3-none-any.whl", hash = "sha256:0dbf33f26c8d5305befd61b39d2b3414e8a407bedc2834dea9b8d642666fb40a", size = 28686 },
]
[[package]]
name = "frozenlist"
version = "1.7.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/79/b1/b64018016eeb087db503b038296fd782586432b9c077fc5c7839e9cb6ef6/frozenlist-1.7.0.tar.gz", hash = "sha256:2e310d81923c2437ea8670467121cc3e9b0f76d3043cc1d2331d56c7fb7a3a8f", size = 45078 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/24/90/6b2cebdabdbd50367273c20ff6b57a3dfa89bd0762de02c3a1eb42cb6462/frozenlist-1.7.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ee80eeda5e2a4e660651370ebffd1286542b67e268aa1ac8d6dbe973120ef7ee", size = 79791 },
{ url = "https://files.pythonhosted.org/packages/83/2e/5b70b6a3325363293fe5fc3ae74cdcbc3e996c2a11dde2fd9f1fb0776d19/frozenlist-1.7.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d1a81c85417b914139e3a9b995d4a1c84559afc839a93cf2cb7f15e6e5f6ed2d", size = 47165 },
{ url = "https://files.pythonhosted.org/packages/f4/25/a0895c99270ca6966110f4ad98e87e5662eab416a17e7fd53c364bf8b954/frozenlist-1.7.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cbb65198a9132ebc334f237d7b0df163e4de83fb4f2bdfe46c1e654bdb0c5d43", size = 45881 },
{ url = "https://files.pythonhosted.org/packages/19/7c/71bb0bbe0832793c601fff68cd0cf6143753d0c667f9aec93d3c323f4b55/frozenlist-1.7.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dab46c723eeb2c255a64f9dc05b8dd601fde66d6b19cdb82b2e09cc6ff8d8b5d", size = 232409 },
{ url = "https://files.pythonhosted.org/packages/c0/45/ed2798718910fe6eb3ba574082aaceff4528e6323f9a8570be0f7028d8e9/frozenlist-1.7.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:6aeac207a759d0dedd2e40745575ae32ab30926ff4fa49b1635def65806fddee", size = 225132 },
{ url = "https://files.pythonhosted.org/packages/ba/e2/8417ae0f8eacb1d071d4950f32f229aa6bf68ab69aab797b72a07ea68d4f/frozenlist-1.7.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bd8c4e58ad14b4fa7802b8be49d47993182fdd4023393899632c88fd8cd994eb", size = 237638 },
{ url = "https://files.pythonhosted.org/packages/f8/b7/2ace5450ce85f2af05a871b8c8719b341294775a0a6c5585d5e6170f2ce7/frozenlist-1.7.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04fb24d104f425da3540ed83cbfc31388a586a7696142004c577fa61c6298c3f", size = 233539 },
{ url = "https://files.pythonhosted.org/packages/46/b9/6989292c5539553dba63f3c83dc4598186ab2888f67c0dc1d917e6887db6/frozenlist-1.7.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a5c505156368e4ea6b53b5ac23c92d7edc864537ff911d2fb24c140bb175e60", size = 215646 },
{ url = "https://files.pythonhosted.org/packages/72/31/bc8c5c99c7818293458fe745dab4fd5730ff49697ccc82b554eb69f16a24/frozenlist-1.7.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8bd7eb96a675f18aa5c553eb7ddc24a43c8c18f22e1f9925528128c052cdbe00", size = 232233 },
{ url = "https://files.pythonhosted.org/packages/59/52/460db4d7ba0811b9ccb85af996019f5d70831f2f5f255f7cc61f86199795/frozenlist-1.7.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:05579bf020096fe05a764f1f84cd104a12f78eaab68842d036772dc6d4870b4b", size = 227996 },
{ url = "https://files.pythonhosted.org/packages/ba/c9/f4b39e904c03927b7ecf891804fd3b4df3db29b9e487c6418e37988d6e9d/frozenlist-1.7.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:376b6222d114e97eeec13d46c486facd41d4f43bab626b7c3f6a8b4e81a5192c", size = 242280 },
{ url = "https://files.pythonhosted.org/packages/b8/33/3f8d6ced42f162d743e3517781566b8481322be321b486d9d262adf70bfb/frozenlist-1.7.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:0aa7e176ebe115379b5b1c95b4096fb1c17cce0847402e227e712c27bdb5a949", size = 217717 },
{ url = "https://files.pythonhosted.org/packages/3e/e8/ad683e75da6ccef50d0ab0c2b2324b32f84fc88ceee778ed79b8e2d2fe2e/frozenlist-1.7.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3fbba20e662b9c2130dc771e332a99eff5da078b2b2648153a40669a6d0e36ca", size = 236644 },
{ url = "https://files.pythonhosted.org/packages/b2/14/8d19ccdd3799310722195a72ac94ddc677541fb4bef4091d8e7775752360/frozenlist-1.7.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:f3f4410a0a601d349dd406b5713fec59b4cee7e71678d5b17edda7f4655a940b", size = 238879 },
{ url = "https://files.pythonhosted.org/packages/ce/13/c12bf657494c2fd1079a48b2db49fa4196325909249a52d8f09bc9123fd7/frozenlist-1.7.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e2cdfaaec6a2f9327bf43c933c0319a7c429058e8537c508964a133dffee412e", size = 232502 },
{ url = "https://files.pythonhosted.org/packages/d7/8b/e7f9dfde869825489382bc0d512c15e96d3964180c9499efcec72e85db7e/frozenlist-1.7.0-cp313-cp313-win32.whl", hash = "sha256:5fc4df05a6591c7768459caba1b342d9ec23fa16195e744939ba5914596ae3e1", size = 39169 },
{ url = "https://files.pythonhosted.org/packages/35/89/a487a98d94205d85745080a37860ff5744b9820a2c9acbcdd9440bfddf98/frozenlist-1.7.0-cp313-cp313-win_amd64.whl", hash = "sha256:52109052b9791a3e6b5d1b65f4b909703984b770694d3eb64fad124c835d7cba", size = 43219 },
{ url = "https://files.pythonhosted.org/packages/56/d5/5c4cf2319a49eddd9dd7145e66c4866bdc6f3dbc67ca3d59685149c11e0d/frozenlist-1.7.0-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:a6f86e4193bb0e235ef6ce3dde5cbabed887e0b11f516ce8a0f4d3b33078ec2d", size = 84345 },
{ url = "https://files.pythonhosted.org/packages/a4/7d/ec2c1e1dc16b85bc9d526009961953df9cec8481b6886debb36ec9107799/frozenlist-1.7.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:82d664628865abeb32d90ae497fb93df398a69bb3434463d172b80fc25b0dd7d", size = 48880 },
{ url = "https://files.pythonhosted.org/packages/69/86/f9596807b03de126e11e7d42ac91e3d0b19a6599c714a1989a4e85eeefc4/frozenlist-1.7.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:912a7e8375a1c9a68325a902f3953191b7b292aa3c3fb0d71a216221deca460b", size = 48498 },
{ url = "https://files.pythonhosted.org/packages/5e/cb/df6de220f5036001005f2d726b789b2c0b65f2363b104bbc16f5be8084f8/frozenlist-1.7.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9537c2777167488d539bc5de2ad262efc44388230e5118868e172dd4a552b146", size = 292296 },
{ url = "https://files.pythonhosted.org/packages/83/1f/de84c642f17c8f851a2905cee2dae401e5e0daca9b5ef121e120e19aa825/frozenlist-1.7.0-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:f34560fb1b4c3e30ba35fa9a13894ba39e5acfc5f60f57d8accde65f46cc5e74", size = 273103 },
{ url = "https://files.pythonhosted.org/packages/88/3c/c840bfa474ba3fa13c772b93070893c6e9d5c0350885760376cbe3b6c1b3/frozenlist-1.7.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:acd03d224b0175f5a850edc104ac19040d35419eddad04e7cf2d5986d98427f1", size = 292869 },
{ url = "https://files.pythonhosted.org/packages/a6/1c/3efa6e7d5a39a1d5ef0abeb51c48fb657765794a46cf124e5aca2c7a592c/frozenlist-1.7.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2038310bc582f3d6a09b3816ab01737d60bf7b1ec70f5356b09e84fb7408ab1", size = 291467 },
{ url = "https://files.pythonhosted.org/packages/4f/00/d5c5e09d4922c395e2f2f6b79b9a20dab4b67daaf78ab92e7729341f61f6/frozenlist-1.7.0-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b8c05e4c8e5f36e5e088caa1bf78a687528f83c043706640a92cb76cd6999384", size = 266028 },
{ url = "https://files.pythonhosted.org/packages/4e/27/72765be905619dfde25a7f33813ac0341eb6b076abede17a2e3fbfade0cb/frozenlist-1.7.0-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:765bb588c86e47d0b68f23c1bee323d4b703218037765dcf3f25c838c6fecceb", size = 284294 },
{ url = "https://files.pythonhosted.org/packages/88/67/c94103a23001b17808eb7dd1200c156bb69fb68e63fcf0693dde4cd6228c/frozenlist-1.7.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:32dc2e08c67d86d0969714dd484fd60ff08ff81d1a1e40a77dd34a387e6ebc0c", size = 281898 },
{ url = "https://files.pythonhosted.org/packages/42/34/a3e2c00c00f9e2a9db5653bca3fec306349e71aff14ae45ecc6d0951dd24/frozenlist-1.7.0-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:c0303e597eb5a5321b4de9c68e9845ac8f290d2ab3f3e2c864437d3c5a30cd65", size = 290465 },
{ url = "https://files.pythonhosted.org/packages/bb/73/f89b7fbce8b0b0c095d82b008afd0590f71ccb3dee6eee41791cf8cd25fd/frozenlist-1.7.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:a47f2abb4e29b3a8d0b530f7c3598badc6b134562b1a5caee867f7c62fee51e3", size = 266385 },
{ url = "https://files.pythonhosted.org/packages/cd/45/e365fdb554159462ca12df54bc59bfa7a9a273ecc21e99e72e597564d1ae/frozenlist-1.7.0-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:3d688126c242a6fabbd92e02633414d40f50bb6002fa4cf995a1d18051525657", size = 288771 },
{ url = "https://files.pythonhosted.org/packages/00/11/47b6117002a0e904f004d70ec5194fe9144f117c33c851e3d51c765962d0/frozenlist-1.7.0-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:4e7e9652b3d367c7bd449a727dc79d5043f48b88d0cbfd4f9f1060cf2b414104", size = 288206 },
{ url = "https://files.pythonhosted.org/packages/40/37/5f9f3c3fd7f7746082ec67bcdc204db72dad081f4f83a503d33220a92973/frozenlist-1.7.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:1a85e345b4c43db8b842cab1feb41be5cc0b10a1830e6295b69d7310f99becaf", size = 282620 },
{ url = "https://files.pythonhosted.org/packages/0b/31/8fbc5af2d183bff20f21aa743b4088eac4445d2bb1cdece449ae80e4e2d1/frozenlist-1.7.0-cp313-cp313t-win32.whl", hash = "sha256:3a14027124ddb70dfcee5148979998066897e79f89f64b13328595c4bdf77c81", size = 43059 },
{ url = "https://files.pythonhosted.org/packages/bb/ed/41956f52105b8dbc26e457c5705340c67c8cc2b79f394b79bffc09d0e938/frozenlist-1.7.0-cp313-cp313t-win_amd64.whl", hash = "sha256:3bf8010d71d4507775f658e9823210b7427be36625b387221642725b515dcf3e", size = 47516 },
{ url = "https://files.pythonhosted.org/packages/ee/45/b82e3c16be2182bff01179db177fe144d58b5dc787a7d4492c6ed8b9317f/frozenlist-1.7.0-py3-none-any.whl", hash = "sha256:9a5af342e34f7e97caf8c995864c7a396418ae2859cc6fdf1b1073020d516a7e", size = 13106 },
]
[[package]]
name = "greenlet"
version = "3.2.3"
@@ -186,6 +308,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl", hash = "sha256:d909fcccc110f8c7faf814ca82a9a4d816bc5a6dbfea25d6591d6985b8ba59ad", size = 73517 },
]
[[package]]
name = "httpx-sse"
version = "0.4.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/6e/fa/66bd985dd0b7c109a3bcb89272ee0bfb7e2b4d06309ad7b38ff866734b2a/httpx_sse-0.4.1.tar.gz", hash = "sha256:8f44d34414bc7b21bf3602713005c5df4917884f76072479b21f68befa4ea26e", size = 12998 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/25/0a/6269e3473b09aed2dab8aa1a600c70f31f00ae1349bee30658f7e358a159/httpx_sse-0.4.1-py3-none-any.whl", hash = "sha256:cba42174344c3a5b06f255ce65b350880f962d99ead85e776f23c6618a377a37", size = 8054 },
]
[[package]]
name = "idna"
version = "3.10"
@@ -243,6 +374,29 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/f6/d5/4861816a95b2f6993f1360cfb605aacb015506ee2090433a71de9cca8477/langchain-0.3.27-py3-none-any.whl", hash = "sha256:7b20c4f338826acb148d885b20a73a16e410ede9ee4f19bb02011852d5f98798", size = 1018194 },
]
[[package]]
name = "langchain-community"
version = "0.3.27"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "aiohttp", marker = "python_full_version >= '3.13'" },
{ name = "dataclasses-json", marker = "python_full_version >= '3.13'" },
{ name = "httpx-sse", marker = "python_full_version >= '3.13'" },
{ name = "langchain", marker = "python_full_version >= '3.13'" },
{ name = "langchain-core", marker = "python_full_version >= '3.13'" },
{ name = "langsmith", marker = "python_full_version >= '3.13'" },
{ name = "numpy", marker = "python_full_version >= '3.13'" },
{ name = "pydantic-settings", marker = "python_full_version >= '3.13'" },
{ name = "pyyaml", marker = "python_full_version >= '3.13'" },
{ name = "requests", marker = "python_full_version >= '3.13'" },
{ name = "sqlalchemy", marker = "python_full_version >= '3.13'" },
{ name = "tenacity", marker = "python_full_version >= '3.13'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/5c/76/200494f6de488217a196c4369e665d26b94c8c3642d46e2fd62f9daf0a3a/langchain_community-0.3.27.tar.gz", hash = "sha256:e1037c3b9da0c6d10bf06e838b034eb741e016515c79ef8f3f16e53ead33d882", size = 33237737 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c8/bc/f8c7dae8321d37ed39ac9d7896617c4203248240a4835b136e3724b3bb62/langchain_community-0.3.27-py3-none-any.whl", hash = "sha256:581f97b795f9633da738ea95da9cb78f8879b538090c9b7a68c0aed49c828f0d", size = 2530442 },
]
[[package]]
name = "langchain-core"
version = "0.3.72"
@@ -304,6 +458,72 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/19/4f/481324462c44ce21443b833ad73ee51117031d41c16fec06cddbb7495b26/langsmith-0.4.8-py3-none-any.whl", hash = "sha256:ca2f6024ab9d2cd4d091b2e5b58a5d2cb0c354a0c84fe214145a89ad450abae0", size = 367975 },
]
[[package]]
name = "marshmallow"
version = "3.26.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "packaging", marker = "python_full_version >= '3.13'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/ab/5e/5e53d26b42ab75491cda89b871dab9e97c840bf12c63ec58a1919710cd06/marshmallow-3.26.1.tar.gz", hash = "sha256:e6d8affb6cb61d39d26402096dc0aee12d5a26d490a121f118d2e81dc0719dc6", size = 221825 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/34/75/51952c7b2d3873b44a0028b1bd26a25078c18f92f256608e8d1dc61b39fd/marshmallow-3.26.1-py3-none-any.whl", hash = "sha256:3350409f20a70a7e4e11a27661187b77cdcaeb20abca41c1454fe33636bea09c", size = 50878 },
]
[[package]]
name = "multidict"
version = "6.6.3"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/3d/2c/5dad12e82fbdf7470f29bff2171484bf07cb3b16ada60a6589af8f376440/multidict-6.6.3.tar.gz", hash = "sha256:798a9eb12dab0a6c2e29c1de6f3468af5cb2da6053a20dfa3344907eed0937cc", size = 101006 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/52/1d/0bebcbbb4f000751fbd09957257903d6e002943fc668d841a4cf2fb7f872/multidict-6.6.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:540d3c06d48507357a7d57721e5094b4f7093399a0106c211f33540fdc374d55", size = 75843 },
{ url = "https://files.pythonhosted.org/packages/07/8f/cbe241b0434cfe257f65c2b1bcf9e8d5fb52bc708c5061fb29b0fed22bdf/multidict-6.6.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9c19cea2a690f04247d43f366d03e4eb110a0dc4cd1bbeee4d445435428ed35b", size = 45053 },
{ url = "https://files.pythonhosted.org/packages/32/d2/0b3b23f9dbad5b270b22a3ac3ea73ed0a50ef2d9a390447061178ed6bdb8/multidict-6.6.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7af039820cfd00effec86bda5d8debef711a3e86a1d3772e85bea0f243a4bd65", size = 43273 },
{ url = "https://files.pythonhosted.org/packages/fd/fe/6eb68927e823999e3683bc49678eb20374ba9615097d085298fd5b386564/multidict-6.6.3-cp313-cp313-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:500b84f51654fdc3944e936f2922114349bf8fdcac77c3092b03449f0e5bc2b3", size = 237124 },
{ url = "https://files.pythonhosted.org/packages/e7/ab/320d8507e7726c460cb77117848b3834ea0d59e769f36fdae495f7669929/multidict-6.6.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f3fc723ab8a5c5ed6c50418e9bfcd8e6dceba6c271cee6728a10a4ed8561520c", size = 256892 },
{ url = "https://files.pythonhosted.org/packages/76/60/38ee422db515ac69834e60142a1a69111ac96026e76e8e9aa347fd2e4591/multidict-6.6.3-cp313-cp313-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:94c47ea3ade005b5976789baaed66d4de4480d0a0bf31cef6edaa41c1e7b56a6", size = 240547 },
{ url = "https://files.pythonhosted.org/packages/27/fb/905224fde2dff042b030c27ad95a7ae744325cf54b890b443d30a789b80e/multidict-6.6.3-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:dbc7cf464cc6d67e83e136c9f55726da3a30176f020a36ead246eceed87f1cd8", size = 266223 },
{ url = "https://files.pythonhosted.org/packages/76/35/dc38ab361051beae08d1a53965e3e1a418752fc5be4d3fb983c5582d8784/multidict-6.6.3-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:900eb9f9da25ada070f8ee4a23f884e0ee66fe4e1a38c3af644256a508ad81ca", size = 267262 },
{ url = "https://files.pythonhosted.org/packages/1f/a3/0a485b7f36e422421b17e2bbb5a81c1af10eac1d4476f2ff92927c730479/multidict-6.6.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7c6df517cf177da5d47ab15407143a89cd1a23f8b335f3a28d57e8b0a3dbb884", size = 254345 },
{ url = "https://files.pythonhosted.org/packages/b4/59/bcdd52c1dab7c0e0d75ff19cac751fbd5f850d1fc39172ce809a74aa9ea4/multidict-6.6.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:4ef421045f13879e21c994b36e728d8e7d126c91a64b9185810ab51d474f27e7", size = 252248 },
{ url = "https://files.pythonhosted.org/packages/bb/a4/2d96aaa6eae8067ce108d4acee6f45ced5728beda55c0f02ae1072c730d1/multidict-6.6.3-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:6c1e61bb4f80895c081790b6b09fa49e13566df8fbff817da3f85b3a8192e36b", size = 250115 },
{ url = "https://files.pythonhosted.org/packages/25/d2/ed9f847fa5c7d0677d4f02ea2c163d5e48573de3f57bacf5670e43a5ffaa/multidict-6.6.3-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:e5e8523bb12d7623cd8300dbd91b9e439a46a028cd078ca695eb66ba31adee3c", size = 249649 },
{ url = "https://files.pythonhosted.org/packages/1f/af/9155850372563fc550803d3f25373308aa70f59b52cff25854086ecb4a79/multidict-6.6.3-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:ef58340cc896219e4e653dade08fea5c55c6df41bcc68122e3be3e9d873d9a7b", size = 261203 },
{ url = "https://files.pythonhosted.org/packages/36/2f/c6a728f699896252cf309769089568a33c6439626648843f78743660709d/multidict-6.6.3-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:fc9dc435ec8699e7b602b94fe0cd4703e69273a01cbc34409af29e7820f777f1", size = 258051 },
{ url = "https://files.pythonhosted.org/packages/d0/60/689880776d6b18fa2b70f6cc74ff87dd6c6b9b47bd9cf74c16fecfaa6ad9/multidict-6.6.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9e864486ef4ab07db5e9cb997bad2b681514158d6954dd1958dfb163b83d53e6", size = 249601 },
{ url = "https://files.pythonhosted.org/packages/75/5e/325b11f2222a549019cf2ef879c1f81f94a0d40ace3ef55cf529915ba6cc/multidict-6.6.3-cp313-cp313-win32.whl", hash = "sha256:5633a82fba8e841bc5c5c06b16e21529573cd654f67fd833650a215520a6210e", size = 41683 },
{ url = "https://files.pythonhosted.org/packages/b1/ad/cf46e73f5d6e3c775cabd2a05976547f3f18b39bee06260369a42501f053/multidict-6.6.3-cp313-cp313-win_amd64.whl", hash = "sha256:e93089c1570a4ad54c3714a12c2cef549dc9d58e97bcded193d928649cab78e9", size = 45811 },
{ url = "https://files.pythonhosted.org/packages/c5/c9/2e3fe950db28fb7c62e1a5f46e1e38759b072e2089209bc033c2798bb5ec/multidict-6.6.3-cp313-cp313-win_arm64.whl", hash = "sha256:c60b401f192e79caec61f166da9c924e9f8bc65548d4246842df91651e83d600", size = 43056 },
{ url = "https://files.pythonhosted.org/packages/3a/58/aaf8114cf34966e084a8cc9517771288adb53465188843d5a19862cb6dc3/multidict-6.6.3-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:02fd8f32d403a6ff13864b0851f1f523d4c988051eea0471d4f1fd8010f11134", size = 82811 },
{ url = "https://files.pythonhosted.org/packages/71/af/5402e7b58a1f5b987a07ad98f2501fdba2a4f4b4c30cf114e3ce8db64c87/multidict-6.6.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:f3aa090106b1543f3f87b2041eef3c156c8da2aed90c63a2fbed62d875c49c37", size = 48304 },
{ url = "https://files.pythonhosted.org/packages/39/65/ab3c8cafe21adb45b24a50266fd747147dec7847425bc2a0f6934b3ae9ce/multidict-6.6.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:e924fb978615a5e33ff644cc42e6aa241effcf4f3322c09d4f8cebde95aff5f8", size = 46775 },
{ url = "https://files.pythonhosted.org/packages/49/ba/9fcc1b332f67cc0c0c8079e263bfab6660f87fe4e28a35921771ff3eea0d/multidict-6.6.3-cp313-cp313t-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:b9fe5a0e57c6dbd0e2ce81ca66272282c32cd11d31658ee9553849d91289e1c1", size = 229773 },
{ url = "https://files.pythonhosted.org/packages/a4/14/0145a251f555f7c754ce2dcbcd012939bbd1f34f066fa5d28a50e722a054/multidict-6.6.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b24576f208793ebae00280c59927c3b7c2a3b1655e443a25f753c4611bc1c373", size = 250083 },
{ url = "https://files.pythonhosted.org/packages/9e/d4/d5c0bd2bbb173b586c249a151a26d2fb3ec7d53c96e42091c9fef4e1f10c/multidict-6.6.3-cp313-cp313t-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:135631cb6c58eac37d7ac0df380294fecdc026b28837fa07c02e459c7fb9c54e", size = 228980 },
{ url = "https://files.pythonhosted.org/packages/21/32/c9a2d8444a50ec48c4733ccc67254100c10e1c8ae8e40c7a2d2183b59b97/multidict-6.6.3-cp313-cp313t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:274d416b0df887aef98f19f21578653982cfb8a05b4e187d4a17103322eeaf8f", size = 257776 },
{ url = "https://files.pythonhosted.org/packages/68/d0/14fa1699f4ef629eae08ad6201c6b476098f5efb051b296f4c26be7a9fdf/multidict-6.6.3-cp313-cp313t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:e252017a817fad7ce05cafbe5711ed40faeb580e63b16755a3a24e66fa1d87c0", size = 256882 },
{ url = "https://files.pythonhosted.org/packages/da/88/84a27570fbe303c65607d517a5f147cd2fc046c2d1da02b84b17b9bdc2aa/multidict-6.6.3-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2e4cc8d848cd4fe1cdee28c13ea79ab0ed37fc2e89dd77bac86a2e7959a8c3bc", size = 247816 },
{ url = "https://files.pythonhosted.org/packages/1c/60/dca352a0c999ce96a5d8b8ee0b2b9f729dcad2e0b0c195f8286269a2074c/multidict-6.6.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:9e236a7094b9c4c1b7585f6b9cca34b9d833cf079f7e4c49e6a4a6ec9bfdc68f", size = 245341 },
{ url = "https://files.pythonhosted.org/packages/50/ef/433fa3ed06028f03946f3993223dada70fb700f763f70c00079533c34578/multidict-6.6.3-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:e0cb0ab69915c55627c933f0b555a943d98ba71b4d1c57bc0d0a66e2567c7471", size = 235854 },
{ url = "https://files.pythonhosted.org/packages/1b/1f/487612ab56fbe35715320905215a57fede20de7db40a261759690dc80471/multidict-6.6.3-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:81ef2f64593aba09c5212a3d0f8c906a0d38d710a011f2f42759704d4557d3f2", size = 243432 },
{ url = "https://files.pythonhosted.org/packages/da/6f/ce8b79de16cd885c6f9052c96a3671373d00c59b3ee635ea93e6e81b8ccf/multidict-6.6.3-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:b9cbc60010de3562545fa198bfc6d3825df430ea96d2cc509c39bd71e2e7d648", size = 252731 },
{ url = "https://files.pythonhosted.org/packages/bb/fe/a2514a6aba78e5abefa1624ca85ae18f542d95ac5cde2e3815a9fbf369aa/multidict-6.6.3-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:70d974eaaa37211390cd02ef93b7e938de564bbffa866f0b08d07e5e65da783d", size = 247086 },
{ url = "https://files.pythonhosted.org/packages/8c/22/b788718d63bb3cce752d107a57c85fcd1a212c6c778628567c9713f9345a/multidict-6.6.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:3713303e4a6663c6d01d648a68f2848701001f3390a030edaaf3fc949c90bf7c", size = 243338 },
{ url = "https://files.pythonhosted.org/packages/22/d6/fdb3d0670819f2228f3f7d9af613d5e652c15d170c83e5f1c94fbc55a25b/multidict-6.6.3-cp313-cp313t-win32.whl", hash = "sha256:639ecc9fe7cd73f2495f62c213e964843826f44505a3e5d82805aa85cac6f89e", size = 47812 },
{ url = "https://files.pythonhosted.org/packages/b6/d6/a9d2c808f2c489ad199723197419207ecbfbc1776f6e155e1ecea9c883aa/multidict-6.6.3-cp313-cp313t-win_amd64.whl", hash = "sha256:9f97e181f344a0ef3881b573d31de8542cc0dbc559ec68c8f8b5ce2c2e91646d", size = 53011 },
{ url = "https://files.pythonhosted.org/packages/f2/40/b68001cba8188dd267590a111f9661b6256debc327137667e832bf5d66e8/multidict-6.6.3-cp313-cp313t-win_arm64.whl", hash = "sha256:ce8b7693da41a3c4fde5871c738a81490cea5496c671d74374c8ab889e1834fb", size = 45254 },
{ url = "https://files.pythonhosted.org/packages/d8/30/9aec301e9772b098c1f5c0ca0279237c9766d94b97802e9888010c64b0ed/multidict-6.6.3-py3-none-any.whl", hash = "sha256:8db10f29c7541fc5da4defd8cd697e1ca429db743fa716325f236079b96f775a", size = 12313 },
]
[[package]]
name = "mypy-extensions"
version = "1.1.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a2/6e/371856a3fb9d31ca8dac321cda606860fa4548858c0cc45d9d1d4ca2628b/mypy_extensions-1.1.0.tar.gz", hash = "sha256:52e68efc3284861e772bbcd66823fde5ae21fd2fdb51c62a211403730b916558", size = 6343 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl", hash = "sha256:1be4cccdb0f2482337c4743e60421de3a356cd97508abadd57d47403e94f5505", size = 4963 },
]
[[package]]
name = "nodeenv"
version = "1.9.1"
@@ -447,6 +667,47 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl", hash = "sha256:e920276dd6813095e9377c0bc5566d94c932c33b27a3e3945d8389c374dd4746", size = 20538 },
]
[[package]]
name = "propcache"
version = "0.3.2"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a6/16/43264e4a779dd8588c21a70f0709665ee8f611211bdd2c87d952cfa7c776/propcache-0.3.2.tar.gz", hash = "sha256:20d7d62e4e7ef05f221e0db2856b979540686342e7dd9973b815599c7057e168", size = 44139 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/dc/d1/8c747fafa558c603c4ca19d8e20b288aa0c7cda74e9402f50f31eb65267e/propcache-0.3.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ca592ed634a73ca002967458187109265e980422116c0a107cf93d81f95af945", size = 71286 },
{ url = "https://files.pythonhosted.org/packages/61/99/d606cb7986b60d89c36de8a85d58764323b3a5ff07770a99d8e993b3fa73/propcache-0.3.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9ecb0aad4020e275652ba3975740f241bd12a61f1a784df044cf7477a02bc252", size = 42425 },
{ url = "https://files.pythonhosted.org/packages/8c/96/ef98f91bbb42b79e9bb82bdd348b255eb9d65f14dbbe3b1594644c4073f7/propcache-0.3.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7f08f1cc28bd2eade7a8a3d2954ccc673bb02062e3e7da09bc75d843386b342f", size = 41846 },
{ url = "https://files.pythonhosted.org/packages/5b/ad/3f0f9a705fb630d175146cd7b1d2bf5555c9beaed54e94132b21aac098a6/propcache-0.3.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1a342c834734edb4be5ecb1e9fb48cb64b1e2320fccbd8c54bf8da8f2a84c33", size = 208871 },
{ url = "https://files.pythonhosted.org/packages/3a/38/2085cda93d2c8b6ec3e92af2c89489a36a5886b712a34ab25de9fbca7992/propcache-0.3.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a544caaae1ac73f1fecfae70ded3e93728831affebd017d53449e3ac052ac1e", size = 215720 },
{ url = "https://files.pythonhosted.org/packages/61/c1/d72ea2dc83ac7f2c8e182786ab0fc2c7bd123a1ff9b7975bee671866fe5f/propcache-0.3.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:310d11aa44635298397db47a3ebce7db99a4cc4b9bbdfcf6c98a60c8d5261cf1", size = 215203 },
{ url = "https://files.pythonhosted.org/packages/af/81/b324c44ae60c56ef12007105f1460d5c304b0626ab0cc6b07c8f2a9aa0b8/propcache-0.3.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c1396592321ac83157ac03a2023aa6cc4a3cc3cfdecb71090054c09e5a7cce3", size = 206365 },
{ url = "https://files.pythonhosted.org/packages/09/73/88549128bb89e66d2aff242488f62869014ae092db63ccea53c1cc75a81d/propcache-0.3.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cabf5b5902272565e78197edb682017d21cf3b550ba0460ee473753f28d23c1", size = 196016 },
{ url = "https://files.pythonhosted.org/packages/b9/3f/3bdd14e737d145114a5eb83cb172903afba7242f67c5877f9909a20d948d/propcache-0.3.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0a2f2235ac46a7aa25bdeb03a9e7060f6ecbd213b1f9101c43b3090ffb971ef6", size = 205596 },
{ url = "https://files.pythonhosted.org/packages/0f/ca/2f4aa819c357d3107c3763d7ef42c03980f9ed5c48c82e01e25945d437c1/propcache-0.3.2-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:92b69e12e34869a6970fd2f3da91669899994b47c98f5d430b781c26f1d9f387", size = 200977 },
{ url = "https://files.pythonhosted.org/packages/cd/4a/e65276c7477533c59085251ae88505caf6831c0e85ff8b2e31ebcbb949b1/propcache-0.3.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:54e02207c79968ebbdffc169591009f4474dde3b4679e16634d34c9363ff56b4", size = 197220 },
{ url = "https://files.pythonhosted.org/packages/7c/54/fc7152e517cf5578278b242396ce4d4b36795423988ef39bb8cd5bf274c8/propcache-0.3.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:4adfb44cb588001f68c5466579d3f1157ca07f7504fc91ec87862e2b8e556b88", size = 210642 },
{ url = "https://files.pythonhosted.org/packages/b9/80/abeb4a896d2767bf5f1ea7b92eb7be6a5330645bd7fb844049c0e4045d9d/propcache-0.3.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:fd3e6019dc1261cd0291ee8919dd91fbab7b169bb76aeef6c716833a3f65d206", size = 212789 },
{ url = "https://files.pythonhosted.org/packages/b3/db/ea12a49aa7b2b6d68a5da8293dcf50068d48d088100ac016ad92a6a780e6/propcache-0.3.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4c181cad81158d71c41a2bce88edce078458e2dd5ffee7eddd6b05da85079f43", size = 205880 },
{ url = "https://files.pythonhosted.org/packages/d1/e5/9076a0bbbfb65d1198007059c65639dfd56266cf8e477a9707e4b1999ff4/propcache-0.3.2-cp313-cp313-win32.whl", hash = "sha256:8a08154613f2249519e549de2330cf8e2071c2887309a7b07fb56098f5170a02", size = 37220 },
{ url = "https://files.pythonhosted.org/packages/d3/f5/b369e026b09a26cd77aa88d8fffd69141d2ae00a2abaaf5380d2603f4b7f/propcache-0.3.2-cp313-cp313-win_amd64.whl", hash = "sha256:e41671f1594fc4ab0a6dec1351864713cb3a279910ae8b58f884a88a0a632c05", size = 40678 },
{ url = "https://files.pythonhosted.org/packages/a4/3a/6ece377b55544941a08d03581c7bc400a3c8cd3c2865900a68d5de79e21f/propcache-0.3.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:9a3cf035bbaf035f109987d9d55dc90e4b0e36e04bbbb95af3055ef17194057b", size = 76560 },
{ url = "https://files.pythonhosted.org/packages/0c/da/64a2bb16418740fa634b0e9c3d29edff1db07f56d3546ca2d86ddf0305e1/propcache-0.3.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:156c03d07dc1323d8dacaa221fbe028c5c70d16709cdd63502778e6c3ccca1b0", size = 44676 },
{ url = "https://files.pythonhosted.org/packages/36/7b/f025e06ea51cb72c52fb87e9b395cced02786610b60a3ed51da8af017170/propcache-0.3.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:74413c0ba02ba86f55cf60d18daab219f7e531620c15f1e23d95563f505efe7e", size = 44701 },
{ url = "https://files.pythonhosted.org/packages/a4/00/faa1b1b7c3b74fc277f8642f32a4c72ba1d7b2de36d7cdfb676db7f4303e/propcache-0.3.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f066b437bb3fa39c58ff97ab2ca351db465157d68ed0440abecb21715eb24b28", size = 276934 },
{ url = "https://files.pythonhosted.org/packages/74/ab/935beb6f1756e0476a4d5938ff44bf0d13a055fed880caf93859b4f1baf4/propcache-0.3.2-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1304b085c83067914721e7e9d9917d41ad87696bf70f0bc7dee450e9c71ad0a", size = 278316 },
{ url = "https://files.pythonhosted.org/packages/f8/9d/994a5c1ce4389610838d1caec74bdf0e98b306c70314d46dbe4fcf21a3e2/propcache-0.3.2-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ab50cef01b372763a13333b4e54021bdcb291fc9a8e2ccb9c2df98be51bcde6c", size = 282619 },
{ url = "https://files.pythonhosted.org/packages/2b/00/a10afce3d1ed0287cef2e09506d3be9822513f2c1e96457ee369adb9a6cd/propcache-0.3.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fad3b2a085ec259ad2c2842666b2a0a49dea8463579c606426128925af1ed725", size = 265896 },
{ url = "https://files.pythonhosted.org/packages/2e/a8/2aa6716ffa566ca57c749edb909ad27884680887d68517e4be41b02299f3/propcache-0.3.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:261fa020c1c14deafd54c76b014956e2f86991af198c51139faf41c4d5e83892", size = 252111 },
{ url = "https://files.pythonhosted.org/packages/36/4f/345ca9183b85ac29c8694b0941f7484bf419c7f0fea2d1e386b4f7893eed/propcache-0.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:46d7f8aa79c927e5f987ee3a80205c987717d3659f035c85cf0c3680526bdb44", size = 268334 },
{ url = "https://files.pythonhosted.org/packages/3e/ca/fcd54f78b59e3f97b3b9715501e3147f5340167733d27db423aa321e7148/propcache-0.3.2-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:6d8f3f0eebf73e3c0ff0e7853f68be638b4043c65a70517bb575eff54edd8dbe", size = 255026 },
{ url = "https://files.pythonhosted.org/packages/8b/95/8e6a6bbbd78ac89c30c225210a5c687790e532ba4088afb8c0445b77ef37/propcache-0.3.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:03c89c1b14a5452cf15403e291c0ccd7751d5b9736ecb2c5bab977ad6c5bcd81", size = 250724 },
{ url = "https://files.pythonhosted.org/packages/ee/b0/0dd03616142baba28e8b2d14ce5df6631b4673850a3d4f9c0f9dd714a404/propcache-0.3.2-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:0cc17efde71e12bbaad086d679ce575268d70bc123a5a71ea7ad76f70ba30bba", size = 268868 },
{ url = "https://files.pythonhosted.org/packages/c5/98/2c12407a7e4fbacd94ddd32f3b1e3d5231e77c30ef7162b12a60e2dd5ce3/propcache-0.3.2-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:acdf05d00696bc0447e278bb53cb04ca72354e562cf88ea6f9107df8e7fd9770", size = 271322 },
{ url = "https://files.pythonhosted.org/packages/35/91/9cb56efbb428b006bb85db28591e40b7736847b8331d43fe335acf95f6c8/propcache-0.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:4445542398bd0b5d32df908031cb1b30d43ac848e20470a878b770ec2dcc6330", size = 265778 },
{ url = "https://files.pythonhosted.org/packages/9a/4c/b0fe775a2bdd01e176b14b574be679d84fc83958335790f7c9a686c1f468/propcache-0.3.2-cp313-cp313t-win32.whl", hash = "sha256:f86e5d7cd03afb3a1db8e9f9f6eff15794e79e791350ac48a8c924e6f439f394", size = 41175 },
{ url = "https://files.pythonhosted.org/packages/a4/ff/47f08595e3d9b5e149c150f88d9714574f1a7cbd89fe2817158a952674bf/propcache-0.3.2-cp313-cp313t-win_amd64.whl", hash = "sha256:9704bedf6e7cbe3c65eca4379a9b53ee6a83749f047808cbb5044d40d7d72198", size = 44857 },
{ url = "https://files.pythonhosted.org/packages/cc/35/cc0aaecf278bb4575b8555f2b137de5ab821595ddae9da9d3cd1da4072c7/propcache-0.3.2-py3-none-any.whl", hash = "sha256:98f1ec44fb675f5052cccc8e609c46ed23a35a1cfd18545ad4e29002d858a43f", size = 12663 },
]
[[package]]
name = "pycparser"
version = "2.22"
@@ -499,6 +760,20 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/6f/9a/e73262f6c6656262b5fdd723ad90f518f579b7bc8622e43a942eec53c938/pydantic_core-2.33.2-cp313-cp313t-win_amd64.whl", hash = "sha256:c2fc0a768ef76c15ab9238afa6da7f69895bb5d1ee83aeea2e3509af4472d0b9", size = 1935777 },
]
[[package]]
name = "pydantic-settings"
version = "2.10.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pydantic", marker = "python_full_version >= '3.13'" },
{ name = "python-dotenv", marker = "python_full_version >= '3.13'" },
{ name = "typing-inspection", marker = "python_full_version >= '3.13'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/68/85/1ea668bbab3c50071ca613c6ab30047fb36ab0da1b92fa8f17bbc38fd36c/pydantic_settings-2.10.1.tar.gz", hash = "sha256:06f0062169818d0f5524420a360d632d5857b83cffd4d42fe29597807a1614ee", size = 172583 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/58/f0/427018098906416f580e3cf1366d3b1abfb408a0652e9f31600c24a1903c/pydantic_settings-2.10.1-py3-none-any.whl", hash = "sha256:a60952460b99cf661dc25c29c0ef171721f98bfcb52ef8d9ea4c943d7c8cc796", size = 45235 },
]
[[package]]
name = "pygments"
version = "2.19.2"
@@ -537,6 +812,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/29/16/c8a903f4c4dffe7a12843191437d7cd8e32751d5de349d45d3fe69544e87/pytest-8.4.1-py3-none-any.whl", hash = "sha256:539c70ba6fcead8e78eebbf1115e8b589e7565830d7d006a8723f19ac8a0afb7", size = 365474 },
]
[[package]]
name = "python-dotenv"
version = "1.1.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/f6/b0/4bc07ccd3572a2f9df7e6782f52b0c6c90dcbb803ac4a167702d7d0dfe1e/python_dotenv-1.1.1.tar.gz", hash = "sha256:a8a6399716257f45be6a007360200409fce5cda2661e3dec71d23dc15f6189ab", size = 41978 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/5f/ed/539768cf28c661b5b068d66d96a2f155c4971a5d55684a514c1a0e0dec2f/python_dotenv-1.1.1-py3-none-any.whl", hash = "sha256:31f23644fe2602f88ff55e1f5c79ba497e01224ee7737937930c448e4d0e24dc", size = 20556 },
]
[[package]]
name = "pyyaml"
version = "6.0.2"
@@ -679,6 +963,19 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/b5/00/d631e67a838026495268c2f6884f3711a15a9a2a96cd244fdaea53b823fb/typing_extensions-4.14.1-py3-none-any.whl", hash = "sha256:d1e1e3b58374dc93031d6eda2420a48ea44a36c2b4766a4fdeb3710755731d76", size = 43906 },
]
[[package]]
name = "typing-inspect"
version = "0.9.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "mypy-extensions", marker = "python_full_version >= '3.13'" },
{ name = "typing-extensions", marker = "python_full_version >= '3.13'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/dc/74/1789779d91f1961fa9438e9a8710cdae6bd138c80d7303996933d117264a/typing_inspect-0.9.0.tar.gz", hash = "sha256:b23fc42ff6f6ef6954e4852c1fb512cdd18dbea03134f91f856a95ccc9461f78", size = 13825 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/65/f3/107a22063bf27bdccf2024833d3445f4eea42b2e598abfbd46f6a63b6cb0/typing_inspect-0.9.0-py3-none-any.whl", hash = "sha256:9ee6fc59062311ef8547596ab6b955e1b8aa46242d854bfc78f4f6b0eff35f9f", size = 8827 },
]
[[package]]
name = "typing-inspection"
version = "0.4.1"
@@ -700,6 +997,54 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl", hash = "sha256:e6b01673c0fa6a13e374b50871808eb3bf7046c4b125b216f6bf1cc604cff0dc", size = 129795 },
]
[[package]]
name = "yarl"
version = "1.20.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "idna", marker = "python_full_version >= '3.13'" },
{ name = "multidict", marker = "python_full_version >= '3.13'" },
{ name = "propcache", marker = "python_full_version >= '3.13'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/3c/fb/efaa23fa4e45537b827620f04cf8f3cd658b76642205162e072703a5b963/yarl-1.20.1.tar.gz", hash = "sha256:d017a4997ee50c91fd5466cef416231bb82177b93b029906cefc542ce14c35ac", size = 186428 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/8a/e1/2411b6d7f769a07687acee88a062af5833cf1966b7266f3d8dfb3d3dc7d3/yarl-1.20.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:0b5ff0fbb7c9f1b1b5ab53330acbfc5247893069e7716840c8e7d5bb7355038a", size = 131811 },
{ url = "https://files.pythonhosted.org/packages/b2/27/584394e1cb76fb771371770eccad35de400e7b434ce3142c2dd27392c968/yarl-1.20.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:14f326acd845c2b2e2eb38fb1346c94f7f3b01a4f5c788f8144f9b630bfff9a3", size = 90078 },
{ url = "https://files.pythonhosted.org/packages/bf/9a/3246ae92d4049099f52d9b0fe3486e3b500e29b7ea872d0f152966fc209d/yarl-1.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f60e4ad5db23f0b96e49c018596707c3ae89f5d0bd97f0ad3684bcbad899f1e7", size = 88748 },
{ url = "https://files.pythonhosted.org/packages/a3/25/35afe384e31115a1a801fbcf84012d7a066d89035befae7c5d4284df1e03/yarl-1.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:49bdd1b8e00ce57e68ba51916e4bb04461746e794e7c4d4bbc42ba2f18297691", size = 349595 },
{ url = "https://files.pythonhosted.org/packages/28/2d/8aca6cb2cabc8f12efcb82749b9cefecbccfc7b0384e56cd71058ccee433/yarl-1.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:66252d780b45189975abfed839616e8fd2dbacbdc262105ad7742c6ae58f3e31", size = 342616 },
{ url = "https://files.pythonhosted.org/packages/0b/e9/1312633d16b31acf0098d30440ca855e3492d66623dafb8e25b03d00c3da/yarl-1.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59174e7332f5d153d8f7452a102b103e2e74035ad085f404df2e40e663a22b28", size = 361324 },
{ url = "https://files.pythonhosted.org/packages/bc/a0/688cc99463f12f7669eec7c8acc71ef56a1521b99eab7cd3abb75af887b0/yarl-1.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e3968ec7d92a0c0f9ac34d5ecfd03869ec0cab0697c91a45db3fbbd95fe1b653", size = 359676 },
{ url = "https://files.pythonhosted.org/packages/af/44/46407d7f7a56e9a85a4c207724c9f2c545c060380718eea9088f222ba697/yarl-1.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1a4fbb50e14396ba3d375f68bfe02215d8e7bc3ec49da8341fe3157f59d2ff5", size = 352614 },
{ url = "https://files.pythonhosted.org/packages/b1/91/31163295e82b8d5485d31d9cf7754d973d41915cadce070491778d9c9825/yarl-1.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:11a62c839c3a8eac2410e951301309426f368388ff2f33799052787035793b02", size = 336766 },
{ url = "https://files.pythonhosted.org/packages/b4/8e/c41a5bc482121f51c083c4c2bcd16b9e01e1cf8729e380273a952513a21f/yarl-1.20.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:041eaa14f73ff5a8986b4388ac6bb43a77f2ea09bf1913df7a35d4646db69e53", size = 364615 },
{ url = "https://files.pythonhosted.org/packages/e3/5b/61a3b054238d33d70ea06ebba7e58597891b71c699e247df35cc984ab393/yarl-1.20.1-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:377fae2fef158e8fd9d60b4c8751387b8d1fb121d3d0b8e9b0be07d1b41e83dc", size = 360982 },
{ url = "https://files.pythonhosted.org/packages/df/a3/6a72fb83f8d478cb201d14927bc8040af901811a88e0ff2da7842dd0ed19/yarl-1.20.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1c92f4390e407513f619d49319023664643d3339bd5e5a56a3bebe01bc67ec04", size = 369792 },
{ url = "https://files.pythonhosted.org/packages/7c/af/4cc3c36dfc7c077f8dedb561eb21f69e1e9f2456b91b593882b0b18c19dc/yarl-1.20.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:d25ddcf954df1754ab0f86bb696af765c5bfaba39b74095f27eececa049ef9a4", size = 382049 },
{ url = "https://files.pythonhosted.org/packages/19/3a/e54e2c4752160115183a66dc9ee75a153f81f3ab2ba4bf79c3c53b33de34/yarl-1.20.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:909313577e9619dcff8c31a0ea2aa0a2a828341d92673015456b3ae492e7317b", size = 384774 },
{ url = "https://files.pythonhosted.org/packages/9c/20/200ae86dabfca89060ec6447649f219b4cbd94531e425e50d57e5f5ac330/yarl-1.20.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:793fd0580cb9664548c6b83c63b43c477212c0260891ddf86809e1c06c8b08f1", size = 374252 },
{ url = "https://files.pythonhosted.org/packages/83/75/11ee332f2f516b3d094e89448da73d557687f7d137d5a0f48c40ff211487/yarl-1.20.1-cp313-cp313-win32.whl", hash = "sha256:468f6e40285de5a5b3c44981ca3a319a4b208ccc07d526b20b12aeedcfa654b7", size = 81198 },
{ url = "https://files.pythonhosted.org/packages/ba/ba/39b1ecbf51620b40ab402b0fc817f0ff750f6d92712b44689c2c215be89d/yarl-1.20.1-cp313-cp313-win_amd64.whl", hash = "sha256:495b4ef2fea40596bfc0affe3837411d6aa3371abcf31aac0ccc4bdd64d4ef5c", size = 86346 },
{ url = "https://files.pythonhosted.org/packages/43/c7/669c52519dca4c95153c8ad96dd123c79f354a376346b198f438e56ffeb4/yarl-1.20.1-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:f60233b98423aab21d249a30eb27c389c14929f47be8430efa7dbd91493a729d", size = 138826 },
{ url = "https://files.pythonhosted.org/packages/6a/42/fc0053719b44f6ad04a75d7f05e0e9674d45ef62f2d9ad2c1163e5c05827/yarl-1.20.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:6f3eff4cc3f03d650d8755c6eefc844edde99d641d0dcf4da3ab27141a5f8ddf", size = 93217 },
{ url = "https://files.pythonhosted.org/packages/4f/7f/fa59c4c27e2a076bba0d959386e26eba77eb52ea4a0aac48e3515c186b4c/yarl-1.20.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:69ff8439d8ba832d6bed88af2c2b3445977eba9a4588b787b32945871c2444e3", size = 92700 },
{ url = "https://files.pythonhosted.org/packages/2f/d4/062b2f48e7c93481e88eff97a6312dca15ea200e959f23e96d8ab898c5b8/yarl-1.20.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cf34efa60eb81dd2645a2e13e00bb98b76c35ab5061a3989c7a70f78c85006d", size = 347644 },
{ url = "https://files.pythonhosted.org/packages/89/47/78b7f40d13c8f62b499cc702fdf69e090455518ae544c00a3bf4afc9fc77/yarl-1.20.1-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:8e0fe9364ad0fddab2688ce72cb7a8e61ea42eff3c7caeeb83874a5d479c896c", size = 323452 },
{ url = "https://files.pythonhosted.org/packages/eb/2b/490d3b2dc66f52987d4ee0d3090a147ea67732ce6b4d61e362c1846d0d32/yarl-1.20.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8f64fbf81878ba914562c672024089e3401974a39767747691c65080a67b18c1", size = 346378 },
{ url = "https://files.pythonhosted.org/packages/66/ad/775da9c8a94ce925d1537f939a4f17d782efef1f973039d821cbe4bcc211/yarl-1.20.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f6342d643bf9a1de97e512e45e4b9560a043347e779a173250824f8b254bd5ce", size = 353261 },
{ url = "https://files.pythonhosted.org/packages/4b/23/0ed0922b47a4f5c6eb9065d5ff1e459747226ddce5c6a4c111e728c9f701/yarl-1.20.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56dac5f452ed25eef0f6e3c6a066c6ab68971d96a9fb441791cad0efba6140d3", size = 335987 },
{ url = "https://files.pythonhosted.org/packages/3e/49/bc728a7fe7d0e9336e2b78f0958a2d6b288ba89f25a1762407a222bf53c3/yarl-1.20.1-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7d7f497126d65e2cad8dc5f97d34c27b19199b6414a40cb36b52f41b79014be", size = 329361 },
{ url = "https://files.pythonhosted.org/packages/93/8f/b811b9d1f617c83c907e7082a76e2b92b655400e61730cd61a1f67178393/yarl-1.20.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:67e708dfb8e78d8a19169818eeb5c7a80717562de9051bf2413aca8e3696bf16", size = 346460 },
{ url = "https://files.pythonhosted.org/packages/70/fd/af94f04f275f95da2c3b8b5e1d49e3e79f1ed8b6ceb0f1664cbd902773ff/yarl-1.20.1-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:595c07bc79af2494365cc96ddeb772f76272364ef7c80fb892ef9d0649586513", size = 334486 },
{ url = "https://files.pythonhosted.org/packages/84/65/04c62e82704e7dd0a9b3f61dbaa8447f8507655fd16c51da0637b39b2910/yarl-1.20.1-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:7bdd2f80f4a7df852ab9ab49484a4dee8030023aa536df41f2d922fd57bf023f", size = 342219 },
{ url = "https://files.pythonhosted.org/packages/91/95/459ca62eb958381b342d94ab9a4b6aec1ddec1f7057c487e926f03c06d30/yarl-1.20.1-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:c03bfebc4ae8d862f853a9757199677ab74ec25424d0ebd68a0027e9c639a390", size = 350693 },
{ url = "https://files.pythonhosted.org/packages/a6/00/d393e82dd955ad20617abc546a8f1aee40534d599ff555ea053d0ec9bf03/yarl-1.20.1-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:344d1103e9c1523f32a5ed704d576172d2cabed3122ea90b1d4e11fe17c66458", size = 355803 },
{ url = "https://files.pythonhosted.org/packages/9e/ed/c5fb04869b99b717985e244fd93029c7a8e8febdfcffa06093e32d7d44e7/yarl-1.20.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:88cab98aa4e13e1ade8c141daeedd300a4603b7132819c484841bb7af3edce9e", size = 341709 },
{ url = "https://files.pythonhosted.org/packages/24/fd/725b8e73ac2a50e78a4534ac43c6addf5c1c2d65380dd48a9169cc6739a9/yarl-1.20.1-cp313-cp313t-win32.whl", hash = "sha256:b121ff6a7cbd4abc28985b6028235491941b9fe8fe226e6fdc539c977ea1739d", size = 86591 },
{ url = "https://files.pythonhosted.org/packages/94/c3/b2e9f38bc3e11191981d57ea08cab2166e74ea770024a646617c9cddd9f6/yarl-1.20.1-cp313-cp313t-win_amd64.whl", hash = "sha256:541d050a355bbbc27e55d906bc91cb6fe42f96c01413dd0f4ed5a5240513874f", size = 93003 },
{ url = "https://files.pythonhosted.org/packages/b4/2d/2345fce04cfd4bee161bf1e7d9cdc702e3e16109021035dbb24db654a622/yarl-1.20.1-py3-none-any.whl", hash = "sha256:83b8eb083fe4683c6115795d9fc1cfaf2cbbefb19b3a1cb68f6527460f483a77", size = 46542 },
]
[[package]]
name = "zstandard"
version = "0.23.0"